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Abstract

Approaches to abnormality detection in crowded scene

largely rely on supervised methods using discriminative

models. In this paper, we presents a novel and efficient

unsupervised learning method for video analysis. We start

from visual saliency, which has been used in several vision

tasks, e.g., image classification, object detection, and fore-

ground segmentation. To detect saliency regions in video

sequences, we propose a new approach for detecting spa-

tiotemporal visual saliency based on the phase spectrum of

the videos, which is easy to implement and computation-

ally efficient. With the proposed algorithm, we also study

how the spatiotemporal saliency can be used in two im-

portant vision tasks, saliency prediction and abnormality

detection. The proposed algorithm is evaluated on several

benchmark datasets with comparison to the state-of-the-art

methods from the literature. The experiments demonstrate

the effectiveness of the proposed approach to spatiotempo-

ral visual saliency detection and its application to the above

vision tasks.

1. Introduction

Automatic abnormality detection for online multimedia

content has been an active area in recent years due to it po-

tential applications for crowded surveillance[30], social me-

dia behavior monitoring[35, 38, 34]and event retrieval[7].

Early approaches [30, 8, 24] focus on either generating dis-

criminative model for semantic indexing the video or de-

compose it into semantic parts. These approaches, which

rely on frame-based video labels, have been shown effective

on certain datasets. Unfortunately, frame-based labels are

in general hard to obtain. Especially, for massive YouTube

videos, it is too labor-and time-intensive to obtain labeled

sets large enough for robust training. Thus, the unsuper-

vised approach would be more desirable. This paper studies

unsupervised video abnormality detection.

Typically, video features such as optical flow, motion tra-

jectory, and spatialtemporal interest points, lack of seman-

tic meanings required by the abnormality detection. In the

supervised case, label information could be directly utilized

to build the connection between video features and video la-

bels. Thus, unsupervised video abnormality detection is in-

herently more challenging than its supervised counterpart.

In this paper, we start from visual saliency, which has at-

tracted a lot of interests in the vision community in recent

years. One early work that is widely known is the approach

by Itti et al. [19]. Since then, a lot of different models have

been proposed for computing visual saliency. Moreover, vi-

sual saliency often depends on not only a static scene but

also the changes in the scene. To this end, spatiotempo-

ral saliency has been proposed, which tries to capture re-

gions attracting visual attention in the spatiotemporal do-

main. Spatiotemporal saliency has been applied to vision

tasks such as video summarization, human-computer inter-

action [18], and video compression. However, these ap-

proaches only focus on the video objects or foreground, but

ignore irregular motion pattern changes, which is an essen-

tial part in abnormality event detection. On the other hand,

the saliency information can be regarded as an abstract of

the video frame (image) [32, 36], which may be exploited to

enable unsupervised abnormality detection. How to achieve

this is the objective of our approach.

In this paper, we study unsupervised video abnormal-

ity detection based on a spatiotemporal saliency detector

by investigating two related challenges: (1) how to model

the interaction between video content and spatiotemporal

saliency systematically so as to augment video analysis us-

ing the information from saliency detection, and (2) how to

use spatiotemporal saliency information to enable unsuper-

vised video analysis. In addressing these two challenges,

we propose a novel spatiotemporal visual saliency detec-

tor for video content analysis, based on the phase infor-

mation of the video. With the saliency map computed us-

ing the proposed method, we analyze how it can be used

for two fundamental vision tasks, namely saliency detec-
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tion and abnormal event detection. We evaluate the per-

formance of the proposed algorithm using several widely

used datasets, with the comparison to the state-of-the-art in

the literature. Our main contribution can be summarized as

following: (1) A parameter free approach to enabling un-

supervised video event detection. Neither normal examples

nor abnormal examples are required for abnormality detec-

tion; (2) A novel and efficient framework for spatiotemporal

saliency detection, which captures the global motion infor-

mation and can be used to model complex activities. We

demonstrate the complexity of the proposed algorithm is

only O(N logN), where N is the size of the input; and (3)

Comprehensive comparisons and evaluations using several

benchmark datasets on saliency detection and abnormality

detection are used to demonstrate that the effectiveness of

the proposed approach, suggesting its potential application

for future video analysis tasks.

2. The Proposed Method

2.1. Spectrum Analysis for Saliency Detection

There has been several explanations for why spectral do-

main based approach is able to detect saliency region from

the image. For example, In [3], it has been shown that hu-

man visual system will select a subset of objects to focus.

In other words, an attention competition exists among ob-

jects in the image. Only a small portion of objects, which

are more distinctive, will be popped out, and rest of ob-

jects, which are usually in a uniform or common patterns,

are suppressed. The spectral magnitude measures the total

response of cells tuned to the specific frequency and orien-

tation. According to lateral surround inhibition, similarly

tuned cells will be suppressed depending on their total re-

sponse, which can be modeled by dividing its spectral by

the spectral magnitude [37]. [13] provided another expla-

nation from sparse representation, which states that, if the

foreground is sparse in spatial domain and background is

sparse in DCT domain (e.g., periodic textures), the spectral

domain based approach will highlight the foreground region

in the saliency map. In a word, given an image (or 2D sig-

nal), f(x, y), the saliency map can be calculated as:

S(x, y) = F−1[h(m,n) ∗ A(m,n) · e−iP(m,n)] (1)

where h is a high pass filter and A,P represent amplitude

and phase of Fourier transform F .

2.2. Spectrum Analysis for Normal Videos

Spectrum analysis in spatiotemporal data, e.g., videos,

is still in its infancy. In [16], the author studied how mo-

tion patterns contribute to saliency. It demonstrate that by

setting the target object having different flicker rate, mov-

ing direction or motion velocity from other objects, the tar-

Figure 1. The spectrum analysis for normal videos. The first col-

umn is sample frame, the second column shows sampled video

points in frequency domain. Please see the figures in color print.

get object can be easily identified by human subjects. In

this paper, we model the video abnormality detection as a

spatiotemporal saliency detection problem, where normal

video frame is regarded as non-salient and abnormality is

perceptually salient.

In [23, 13], it has been shown that, for natural image,

the amplitude spectrum of background (non-salient region)

has higher value at lower frequency. Essentially, our ob-

servation demonstrates that, in the temporal domains, the

normal video frames, where object can be modeled in a uni-

form motion pattern , will have higher amplitude in lower

frequencies than higher frequencies. Thus, the phase in-

formation of temporal domain can be used for abnormality

modeling. We show that one can exploit such informative

observation through spectrum analysis.

In order to demonstrate the property of spectrum of nor-

mal videos, we generate two synthetic videos. The first

video contains a uniform background (black) and second

video with a moving object (33 by 33) which has its value

uniformly distributed (white). Moreover, the motion trajec-

tory of the object is followed as the red circle with same

speed (we call it regular motion) in Figure 1. Specifically,

two points, which are sampled from background and motion

trajectory respectively, are further plotted in the frequency

domain through the time period.

From Figure 1, we can interpret the result as following:

1) if no global motion in the video, the background (even

with dynamic scenes, we show later) has higher response

in the lower frequency domain. 2)Since the result of the

spectrum obeys the symmetry [2], the amplitude from the

points within regular motion object also trend to be higher

in lower frequencies.

2.3. Modeling Video Abnormality via Saliency De­
tection

Based on the spectrum analysis of normal video, we

have observed some potential properties. Then two research

questions arises: 1) How to model the video abnormality

only using the information from amplitude spectrum? 2)



How to automatically find the abnormality in a video? An-

swering these questions leads us to further analyze the am-

plitude spectrum with phase information. Given a signal

f(x, y, t) it is first transformed to the frequency domain

f(x, y, t)
F−→ F(m,n, k), with the amplitude A(i, j, k) =

|F(m,n, k)| and phase P(m,n, k) = angle(F(m,n, k).
Based on the Fourier Transform and inverse Fourier Trans-

form, we have:

f(x, y, t) = F−1 [F(m,n, k)]

= F−1
[

A(m,n, k) · ei·P(m,n,k)
] (2)

In order to extract the video abnormality, and inspired by

the saliency detection, we perform a high pass filtering on

the frequency domain in temporal dimension, which will

suppress the signals from normal videos. Then we model

the abnormality in a saliency fashion:

S(x, y, t) = g ∗ F−1[h(k) ∗ A(m,n, k) · ei·P(m,n,k)] (3)

where h(k) is the high-pass filter along the temporal di-

rection in the frequency domain, and g is a low pass filter

in spatiotemporal domain, e.g., 3D Gaussian filter, which

smooths the result. However, Eq 3 only considers the tem-

poral information for video abnormality detection, which

may involve the noise from background if the video con-

tains global motion. To alleviate this issue, we further in-

corporate the spatial saliency information to refine the de-

tection results. The improved model is described as below:

S(x, y, t) =g ∗ F−1[h(k) ∗ l(m,n) ∗ (A(m,n, k) · ei·P(m,n,k))]
(4)

where l(m,n) is the high pass filter along the spatial direc-

tion in the frequency domain. In frequency domain, setting

the spectrum magnitude to uniform can achieve similar ef-

fect of high pass filter. In order to reduce the computation

cost, we further relax Eq 4 (further analysis shown in Sec

2.4 ):

S(x, y, t) = g ∗ F−1[ei·P(m,n,t)]

= g ∗ F−1(
F(m,n, k)

|F(m,n, k)| )
(5)

Eq 5 actually adopts the phase information of a video for

saliency detection, it can be easily paralleled. The Fourier

transform for multiple dimensional data can be computed

as a sequence of 1D Fourier transform on each coordinate

of the data. Thus the computation cost of the proposed

spatiotemporal saliency detector is O(MNTlog(MNT ))
when the input data size is X ∈ R

M×N××T . If the

data has P feature channel, then the computational cost is

O(PMNT log(MNT )).

2.4. Analysis

In this section, we provide evidence that, for a fore-

ground object with irregular motion pattern, the proposed

spatiotemporal saliency detector can approximately obtain

its location in a video based on Parseval’s theorem [2].

Parseval’s theorem: The energy in u(t) equals the en-

ergy in U(f), where u(t) =
∫ +∞

f=−∞
U(f) · ei2πftdf

Now, given a 3D signal and reconstruct it with only

phase information:

S(x, y, t) = g ∗ F−1[
F(m,n, k)

|F(m,n, k)| ]

= g ∗ F−1[1(m,n, k) · ei·P(m,n,k)]

(6)

Based on Parseval’s theorem, we know the summation

across all the dimensions of f(x, y, t) is equal to the sum-

mation across all the frequency component in the frequency

domain. From the Eq 6, we can see that when only using

the phase information it is equal to replace the amplitude

spectrum A(t) to a cube. In other words, all of the elements

which have non-zero value in magnitude spectrum are set to

one. The region with repeat (regular) motion pattern creates

a high peak in the magnitude spectrum (Figure 1) is sup-

pressed; while the region with salient (irregular motion pat-

tern instead corresponds to the spread-out magnitude spec-

trum will pop-out. Additionally, based on the proposition in

[13], we can easily extend the sparse condition for saliency

detection in the spatial domain to the spatiotemporal do-

main, which means the proposed method is also bounded

with the ratio of salient region and non salient region. Due

to the space limits, we omit the proof.

To verify the correctness of the proposed model, we gen-

erate one synthetic video to test the abnormality detection.

The video contains a dynamic background with two mov-

ing squares with same texture. One of squares follows the

red circle and moves steadily (we call normal object), an-

other moving square moving randomly (we call abnormal

object). The motion trajectory of these square is defined as

following:

Γ1(t) =

[

x(t)
y(t)

]

=

[

128 + 64cos(πt32 )
128 + 64sin(πt32 )

]

Γ2(t) =

[

x(t)
y(t)

]

=

[

64 + 32cos(πt32 ) + ǫ
64 + 32sin(πt32 ) + ǫ

]

where ǫ is a random variable uniformly draw from [0, 128].
We view the object with trajectoryΓ1 moving regularly. For

the Gauss filter used to smooth the saliency map, we set the

standard deviation as 0.006
√
N2 +M2 and te filter size as

1 + 6σ, where N ×M is the size of each frame.



In Fig. 2, we show some sample frames of the video

(top), the results from the proposed method (middle) with

the comparison to the results of the method proposed in

[11] (bottom), where the frame differences of two adjacent

frames are used as temporal information. From the figure,

we can find the proposed method highlight the moving ob-

jects over the dynamic background; in addition, the object

moving “irregularly” (i.e., with trajectory Γ2) gets higher

values in the saliency map than the other object (the one

with trajectory Γ1) does. In contrast, the method proposed

in [11] not only has problem in segmenting the moving ob-

jects from changing background, but also can’t discriminate

the one moving “irregularly” from the one moving regu-

larly. One explanation could be that simply the frame dif-

ferences of two adjacent frames can’t distinguish the object

moving irregularly from the object moving reguarly. This

reveals the potential of the proposed method to detect irreg-

ular events from the video (or abnormal events), as detailed

in the next section.

Figure 2. Top: some sample frames from the input video, where

the red circle indicates the trajectory Γ1; middle: the correspond-

ing saliency maps; and bottom: the saliency map computed with

method described in [11]. For the saliency map, the warm color

indicates high value and cold color for low value. The video can

be found in the supplementary material. Please see the figures in

color print.

3. Experiment

Since the proposed method is based on saliency detec-

tion, to verify the correctness in saliency detection, we first

evaluate the proposed method on both syntheic data (Sec.

3.1) and two real-world video datasets (Sec. 3.2), CRCNS-

ORIG and DIEM, for saliency detection. Then we evalu-

ate the proposed method on several benchmark datasets on

abnormality detection. The performance of the proposed

methods are compared with the existing methods, some of

which are state-of-the-art methods.

3.1. Simulation Experiment

In this section, we evaluate the proposed method on syn-

thetic data. In [16], how three properties of motion, namely

flicker, direction and velocity, contribute to the saliency was

studied. In this section, we generate the synthetic data ac-

cording to the their protocol. The input data is a short clip

where the resolution is 174 × 174 with 400 frames at the

frame rate of 60 frames per second. We put 36 objects of

size 5 × 13 in a 6 × 6 grid and a target object is randomly

selected out of those 36 objects. All the objects are allowed

to move within a 29×29 region centered at their initial posi-

tion (and warped back, if they move out of this region). The

video is black-and-white. We design the following three

experiments:

1. Flicker: we set the objects on-off at a specified rate

and the target object at a different rate from the other

35 objects;

2. Direction: we set the objects moving in a specified

direction and the target object in a different direction.

The velocity of all the objects are the same;

3. Velocity: we set the objects moving in a specified ve-

locity and the target object moves in a different veloc-

ity. The moving direction of the all the objects are the

same.

All the other parameters are the same as used in [16]. Ac-

cording to [16], the target object could be easily identified

by human subjects, when its motion property (e.g., flicker

rate, moving direction, velocity) is different from the other

objects. We also include some “blind” trials, where the tar-

get object has the same motion property as the other 35 ob-

jects. In this case, the target object can’t be identified by the

human subjects, i.e., there is no salient region.

We apply the proposed method to the input data. For

comparison, we also evaluate the method proposed in [4]

and [13]. We use the area under receiver operating charac-

teristic curve as the performance metric. The ground truth

mask is generated according to the location of the target ob-

ject. The experiment result is shown in Figure 3.

From the experiment results, we can find that the pro-

posed method detects the salient region much more accu-

rately than [4] and [13] in all except the “blind” trials, which

should be as lower as possible in terms of abnormality.

However, [4] and [13] don’t survive in those “blind” tri-

als. Surprisingly, [4] and [13] achieves quite similar perfor-

mances, though [4] was supposed to achieve better result as

it include the differences of two adjacent frames as motion

(temporal) information.
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Figure 3. The AUC on the synthetic data for the proposed method and two existing methods. For “Direction” and “Velocity”, we also

include some “blind” trials (X-axis has value 0), where the target object has exactly the same motion property as the other 35 objects. In

those trials, the target object can’t be identified by human subjects, i.e., there is no salient object [16].
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Figure 4. Some visual sample of the synthetic data for different experiments.

3.2. Spatiotemporal Saliency Detection

In previous section, we test the proposed spatiotempo-

ral saliency detector on synthetic videos, with the compari-

son to two other saliency detectors, where the proposed de-

tector shows better performances in capturing the tempo-

ral information. In this section, we evaluate the proposed

spatiotemporal saliency detector on two challenging video

datasets for saliency evaluation, CRCNS-ORIG [20] and

DIEM [29]. For this experiment, we first convert each frame

into the LAB color space, then compute the spatiotemporal

saliency in each channel independently and the final spa-

tiotemporal saliency is the summation of the saliency maps

of all three channels.

CRCNS-ORIG includes 50 video clips from different

genres, including TV programs, outdoor scenes and video

games. Each clip is 6-second to 90-second long at 30 frames

per second. The eye fixation data is captured from eight

subjects with normal or correct-normal vision. In our ex-

periment, we downsample the video from 640 × 480 to

160×120 and keep the frame rate untouched, then apply the

our spatiotemporal saliency detector. To measure the per-

formance, we compute the area under curve (AUC) and F-

measure (harmonic mean of true positive rate and false pos-

itive rate). The experiment result is shown in Fig. 5, where

the area under curve (AUC) is 0.6639 and F-measure is

0.1926. Tab. 1 compares the result of the proposed method

with some state-of-art methods on CRCNS-ORIG, which

indicates that our method outperforms them by at least 0.06
regarding AUC.
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Figure 5. The receiver operating characteristic curve of the propose

method in CRCNS-ORIG dataset and DIEM dataset. The area

under the curve is 0.6639 and 0.6896 accordingly.

DIEM dataset collects data of where people look during

dynamic scene viewing such as film trailers, music videos,

or advertisements. It currently consists of data from over



Method AUC Method AUC

AWS [10] 0.6000 AWS [10] 0.5770
HouNIPS [15] 0.5967 Bian [4] 0.5730

Bian [4] 0.5950 Marat [27] 0.5730
IO 0.5950 Judd [21] 0.5700

SR [14] 0.5867 AIM [6] 0.5680
Torralba [33] 0.5833 HouNIPS [15] 0.5630

Judd [21] 0.5833 Torralba [33] 0.5840
Marat [27] 0.5833 GBVS [12] 0.5620

Rarity-G [26] 0.5767 SR [14] 0.5610
CIOFM [17] 0.5767 CIO [17] 0.5560

Proposed 0.6639 Proposed 0.6896

Table 1. The result the proposed method compared with the re-

sults of the top ten existing methods on CRCNS dataset (left) and

DIEM dataset (right) according to [5]. From this table, we can find

that the propose method gets obvious better performances than the

state-of-arts on both two datasets.

250 participants watching 85 different videos. Each video

in DIEM dataset includes 1000 to 6000 frames at 30 frames

per second. Similarly as CRCNS, we downsample the video

to 1/4 (e.g., from 1280×720 to 320×180) while maintain-

ing the aspect ratio and frame rate. We observe that each

video in DIEM dataset is consisted of a sequence of short

clips, where each clip has 30 to 100 frames. To properly

detect the saliency from those videos, we apply the window

function to our spatiotemporal saliency detector, where the

size of the window (along temporal direction) is 60-frame.

The experiment result is shown in Fig. 5 and Tab. 1, where

the AUC is 0.6896 and F-measure is 0.35. From the table,

we can find that the proposed method outperforms the state-

of-arts by over 10%.

To compare the performances of combining four visual

cues via QFT and performances via summation of saliency

maps of each visual cues, we design the following experi-

ment. We run 1000 simulations and in each simulation we

generate a r×c×4 array, where r and c is a random number

between [1, 1000] and 4 is the number of feature channels.

We compute the saliency map with different methods then

measures their similarities via cross-correlation, where 0.91

is reported for QFT and FFT. After smoothing the saliency

map with a Gaussian kernel, the correlation is over 0.998.

For natural image, we could expect an even higher correla-

tion.

This suggests that, we can compute the saliency map for

each visual cue independently and then add them together,

which will yield quite similar result by using quaternion

Fourier transform. In addition, the proposed method other

than QFT provides more flexibility, e.g., we can assign dif-

ferent weights to the visual cues as [21].

We also include the AUC of the proposed method for

each video from the CRCNS-ORIG (Figure 6) and DIEM

dataset (Figure 7).

Method AUC

Optical flow [28] 0.84
Social force [28] 0.96

NN [9] 0.93
Sparse reconstruction [9] 0.978

Proposed 0.9378

Table 2. The result on UMN dataset. Note, we have cropped out

the region which contains the text “abnormal”, and results in frame

resolution 214 × 320. Please note that, most of those methods,

except the proposed one, need a training stage.

3.3. Abnormality Detection

In this section, we show how can we utilize the proposed

spatiotemporal saliency detector to detect abnormality from

the video.

Method Ped1 Ped2 Overall

Social force [28] 31% 42% 37%
MPPCA [22] 40% 30% 35%

MDT [25] 25% 25% 25%
Adam [1] 38% 42% 40%

Reddy [31] 22.5% 20% 21.25%
Sparse [9] 19% N.A. N.A.
Proposed 27% 19% 23%

Table 3. The frame level EER (the lower the better) for UCSD

dataset. Please note that, most of those methods, except the pro-

posed one, need a training stage. From the result, we can found

that the proposed method, even without traing stage or training

data, can still outperform social force, MPPCA.

For abnormality detection, we start with computing the

saliency map for the input video as described above. The

regions containing abnormalities can be detected by found-

ing the region where the saliency value is above a threshold.

Then the saliency score of a frame is computed as the aver-

age of saliency value of the pixels in that frame, i.e.,

s(t) =
1

NM

∑

i

∑

j

X(i, j, t) (7)

where s(t) is the saliency score of tth frame, N × M
is the size of one frame, i, j, t are row, column and frame

index of the 3D saliency map accordingly. The frame with

high saliency score would contain abnormality. To show the

proposed method is not sensitive to the value of threshold,

we choose the average value of the saliency in the video as

threshold.

We evaluate the proposed method for abnormality detec-

tion in videos from two datasets: UMN abnormal dataset1

and UCSD dataset [25]. Abnormal detection has attracted

1http://mha.cs.umn.edu/Movies/Crowd-Activity-All.avi

http://mha.cs.umn.edu/Movies/Crowd-Activity-All.avi
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Figure 6. The AUC of the proposed method for each video from CRCNS-ORIG dataset.
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Figure 7. The AUC of the proposed method for each video from DIEM dataset.

a lot efforts from the researchers. However, most of the ex-

isting works require training stage, e.g., social force [28],

sparse reconstruction [9], MPPCA [22], i.e., they need

training data to initialize the model. The proposed method,

instead, does NOT need any training stage or training data.

The result on UMN abnormal dataset is shown in Tab.

2, where we compute the frame-level true positive rate and

false positive rate then compute the area under the ROC

(Fig. 9). Fig. 10 shows the result for videos of three

scenes, where we plot saliency value of each frame and

show some sample frames. The result on UCSD dataset

is shown in Tab. 3, where we report frame-level equal-error

rate (EER) [25]. Fig. 11 shows the ROC for UCSD dataset

with the proposed method; Fig. 8 shows eight samples

frames, where red color highlights abnormal regions. We

can find that, without training data, the proposed method

still outperforms several state-of-arts in the literature, e.g.,

social force, MPPCA.

4. Conclusion and Discussion

In this paper, we proposed a novel approach for detecting

spatiotemporal saliency, which was simple to implement

and computationally efficient. The proposed approach was

inspired by recent development of spectrum analysis based

visual saliency approaches, where phase information was

used for constructing the saliency map of the image. Rec-

ognizing that the computed saliency map captured the re-

gion of human’s attention for dynamic scenes, we proposed

two algorithms utilizing this saliency map for two important

vision tasks. These approaches were evaluated on several

well-known datasets with comparisons to the state-of-arts

in the literature, where good results were demonstrated.
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Figure 8. Some sample results for the UCSD datasets, where the

red color highlights the detected abnormal region, i.e., the saliency

value of the pixel is higher than four times of the mean saliency

value of the video. Please see the figures in color print.
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and A. Guérin-Dugué. Modelling spatio-temporal saliency

to predict gaze direction for short videos. IJCV, 82(3):231–

243, 2009. 6

[28] R. Mehran, A. Oyama, and M. Shah. Abnormal crowd be-

havior detection using social force model. In CVPR 2009,

pages 935 –942, june 2009. 6, 7

[29] P. K. Mital, T. J. Smith, R. L. Hill, and J. M. Henderson.

Clustering of gaze during dynamic scene viewing is pre-

dicted by motion. Cognitive Computation, 3(1):5–24, 2011.

5

[30] R. Raghavendra, A. Del Bue, M. Cristani, and V. Murino.

Optimizing interaction force for global anomaly detection

in crowded scenes. In Computer Vision Workshops (ICCV

Workshops), pages 136 –143, nov. 2011. 1

[31] V. Reddy, C. Sanderson, and B. Lovell. Improved anomaly

detection in crowded scenes via cell-based analysis of fore-

ground speed, size and texture. In CVPRW, pages 55 –61,

june 2011. 6

[32] Q. Tian and B. Li. Simultaneous semantic segmentation of a

set of partially labeled images. In IEEE Winter Conference

on Applications of Computer Vision, 2016. 1

[33] A. Torralba. Modeling global scene factors in attention.

JOSA A, 20(7):1407–1418, 2003. 6

[34] Y. Wang, Y. Hu, S. Kambhampati, and B. Li. Inferring sen-

timent from web images with joint inference on visual and

social cues: A regulated matrix factorization approach. In

Proceedings of the Ninth International Conference on Web

and Social Media, ICWSM 2015, University of Oxford, Ox-

ford, UK, May 26-29, 2015, pages 473–482, 2015. 1

[35] Y. Wang, S. Wang, J. Tang, H. Liu, and B. Li. Unsupervised

sentiment analysis for social media images. In Proceedings

of the Twenty-Fourth International Joint Conference on Arti-

ficial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July

25-31, 2015, pages 2378–2379, 2015. 1

[36] Z. Wang and B. Li. A two-stage approach to saliency de-

tection in images. In Acoustics, Speech and Signal Process-

ing, 2008. ICASSP 2008. IEEE International Conference on,

pages 965–968. IEEE, 2008. 1

[37] L. Zhaoping and P. Dayan. Pre-attentive visual selection.

Neural Networks, 19(9):1437–1439, 2006. 2

[38] D. Zhou, J. He, K. S. Candan, and H. Davulcu. MUVIR:

multi-view rare category detection. In Proceedings of the

Twenty-Fourth International Joint Conference on Artificial

Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-

31, 2015, pages 4098–4104, 2015. 1


